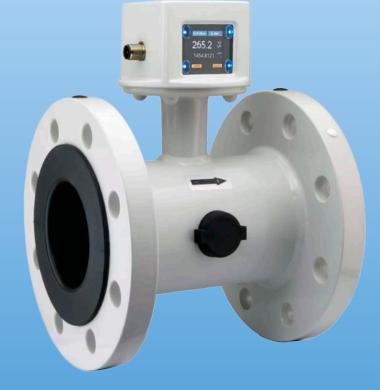


Electromagnetic Flow Meter



measuring monitoring analysing

MIS

- Accuracy: <±(0.5% of reading +0.5% of full scale)
- Monitoring, transmitter function, dosing
- Bidirectional measuring
- p_{max}: 16 bar; t_{max}: 70 °C
- Connection flange 2", DN50, 3", DN80, 4", DN 100

KOBOLD companies worldwide:

AUSTRALIA, AUSTRIA, BELGIUM, BULGARIA, CANADA, CHINA, CZECHIA, FRANCE, GERMANY, GREAT BRITAIN, HUNGARY, INDIA, INDONESIA, ITALY, MALAYSIA, MEXICO, NETHERLANDS, PERU, POLAND, REPUBLIC OF KOREA, SPAIN, SWITZERLAND, THAILAND, TUNISIA, TURKEY, USA, VIETNAM

KOBOLD Messring GmbH Nordring 22-24 D-65719 Hofheim/Ts. Head Office:

+49(0)6192 299-0 +49(0)6192 23398 info.de@kobold.com www.kobold.com

Electromagnetic Flow Meter Model MIS

Description

The new flow meter MIS was developed for measuring and monitoring medium-sized flow of conductive liquids in pipes.

The device operates according to the electromagnetic measurement principle. According to Faraday's Law of magnetic induction, a voltage is induced in a conductor moving through a magnetic field. The electrically conductive measuring agent acts as the moved conductor. The voltage induced in the measuring agent is proportional to the flow velocity and is therefore a value for the volumetric flow. The flowing media must have a minimum conductivity. The induced voltage is picked up by two sensing electrodes which are in contact with the measuring agent and sent to the measuring amplifier.

The flow rate will be calculated based on the cross sectional area of the pipe.

The measurement is not depending on the process liquid and its material properties such as density, viscosity and temperature. The units include a universal U-PACE electronics (Universal Precision and Control Electronics) which features two outputs arbitrarily configurable by the customer.

The U-PACE electronics offers various diagnostic functions and the following features:

- Flow- and temperature measurement
- Monitoring, dosing and transmitter function
- Dosing function with external control input
- Coloured, multi-parameter configurable TFT-display, rotatable in 90° steps
- Bidirectional measuring
- Intuitive setup menu via 4 optical touch keys
- 2 configurable outputs (pulse-/frequency-/alarm- and analogue output)
- Grand and resettable totaliser
- IO link function

Significant Characteristics

- Monitoring, dosing and transmitter function
- Dosing function with external control input
- Coloured, multi-parameter configurable TFT-display, rotatable in 90° steps
- Bidirectional measuring
- Intuitive setup menu via 4 optical touch keys
- 2 configurable outputs (pulse-/frequency-/alarm- and analogue output)
- Grand and resettable totaliser

Areas of Application

- Water tapping
- Water treatment
- Water distribution network (leakage detection management)
- Watering
- Waste water treatment
- Filtration systems (e.g. reverse osmosis and ultrafiltration)
- Industrial applications

Technical Details

Measurement process: electromagnetic Range: see flow specific values Media: conductive fluids Minimum conductivity: ≥20 µS/cm Max. medium viscosity: 70 cP

Accuracy: $<\pm(0.5\% \text{ of reading} + 0.5\% \text{ of}$

full scale)*

Repeatability: ±0.2% of full scale

Response time flow t₉₀

(alarm output/

Max. pressure:

pulse output): <250 ms Mounting position: in all directions In-/outlet: 5xDN/3xDN

Pressure drop

(max. at 3 m/s): 25 mbar

4 optical touch fields, Handling:

useable with hand gloves aluminium, powder coated,

Housing:

display screen PMMA

Wetted parts

Connection: steel ASTM A105, paint coated

(Corrosivity category C4M)

NBR (others on request) Lining:

Electrodes: Hastelloy® C276

Protection: IP 67

Media temperature: -10°C...+70°C -10°C...+60°C Ambient temperature:

Electrical data

Supply voltage: $19-30 V_{DC}$, internal power

consumption max. 200 mA

TFT display, 128 x 128 pixels, Display:

1.4" display orientation in 90° steps

adjustable

Display repetition rate: 0.5...10 s, adjustable Pulse output Push-Pull, freely scalable,

configurable for partial and accumulated totaliser

500 µS/cm, 1 bar

ambience temperature: 15 °C...30 °C

^{*} Under reference conditions: media temperature: 15°C...30°C, 1 cSt,

Electromagnetic Flow Meter Model MIS

Technical Details (continued)

Push-Pull, freely scalable, active signal U_{high} max. 30 V_{DC} Frequency output Control input:

2 kHz @ overflow $0 < Low < 10 V_{DC}$ f_{min} @ FS = 50 Hz 15 V_{DC} <High <Vs

 f_{max} @ FS = 1000 Hz Dosing output OUT2: Dosing function:

NPN, PNP, Push-Pull, Push-Pull, High active Alarm output:

Control input OUT1: configurable max. 30 V_{DC} , max. 200 mA short-circuit proof

START/STOP 0,5 s <t $_{high}$ <4 s RESET $t_{high} > 5 s$ active, 3 wire, 0(4)-20 mA, Analogue output:

max. load 500 Ω or 0(2)-10 V_{DC} , Electrical connection: plug M12x1, 4-pin

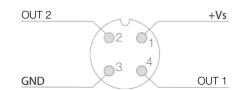
 $(R_i = 500 \Omega)$ (factory calibrated with $R_i = 1 M\Omega$)

S	ize	Magazinia 200 00 (1023/lp)		
DN	ASME	Measuring range (m³/h)		
40	11/2"	0.2 45		
50	2"	0.3 63		
65	21/2"	0.4100		
80	3"	0.6 160		
100	4"	1.0250		
125	5"	1.6400		
150	6"	2.4600		
200	8"	4.01000		

Configuration of outputs

Flow Specific Values

Output 1 (OUT1, PIN 4)	Output 2 (OUT2, PIN 2)
Analogue output 4-20 mA	Analogue output 4-20 mA
Analogue output 0-20 mA	Analogue output 0-20 mA
Analogue output 2-10 V	Analogue output 2-10 V
Analogue output 0-10 V	Analogue output 0-10 V
Switching output NPN/PNP/PP	Switching output NPN/PNP/PP
Pulse output PP	Pulse output PP
Frequency output PP	Frequency output PP
Communication mode M12 COM	
Communication mode IO-Link	
Control input	
Control input dosing function	Dosing output


IO-Link specification

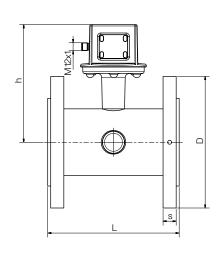
Manufacturer ID: 1105 (decimal), 0 x 0451 (hex) Manufacturer name: Kobold Messring GmbH

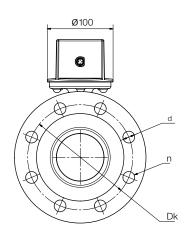
IO-Link specification: V1.1 Bitrate: COM3 Minimal cycle time: 1,1 ms

SIO-Mode: yes (OUT1 in configuration IO-Link)

Block parameterisation: yes Operational readiness: 10 s Max. cable length: 20 m

Electrical Connection MIS



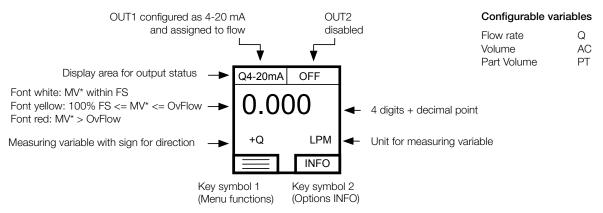

Order Details (Example: MIS-H 330B1 HH 100)

Model	Material lining	Flange type/size	Material process connection	Measuring and earthing electrodes	Transmitter mounting
MIS-	H = hard rubber X¹)= acc. to specification	320B = DN50 PN16 form A DIN EN1092-1 325B = DN65 PN16 form A DIN EN1092-1 330B = DN80 PN16 form A DIN EN1092-1 335B = DN100 PN16 form A DIN EN1092-1 206R = 2" Class 150 FF ASME B16.5-2003 208R = 3" Class 150 FF ASME B16.5-2003 210R = 4" Class 150 FF ASME B16.5-2003 XXXX = acc. to specification	1 = steel, paint coated	HH = Hastelloy® XX²) = acc. to specification	100 = integrated

¹⁾ Possible linings on request: EPDM (replace "X" with "E"), soft rubber (replace "X" with "W") and PTFE (replace "X" with "P") 2) On request are following available: platinum, stainless steel, tantal, titanium

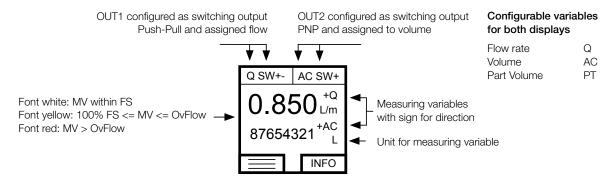
Dimensions [mm]

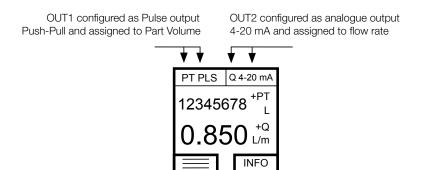
	Nominal diameter	h	L	D	s	Dk	d	n
DIN	DN50	167	200	165	20	125	18	4
	DN 80	179	200	200	20	160	18	8
	DN 100	186	250	220	22	180	18	8
	DN 150	211	300	285	22	240	22	8
	DN 200	263	350	340	24	295	22	12
ASME	2"	167	200	150	21	120.6	19	4
	3"	179	200	190	26	152.4	19	4
	4"	186	250	230	27	190.5	19	8
	6"	211	300	279	31	241.3	22.2	8
	8"	263	350	343	34	298.4	22.2	8


Weight

Nomi	nal size	Pressure rating	NBR lining	
[mm]	[Inch]		Weight [kg]	
50	2	PN16 / Cl. 150	9.4	
80	3	PN16 / Cl. 150	12	
100	4	PN16 / Cl. 150	15.6	
150	6	PN16 / Cl. 150	26.4	
200	8	PN16 / Cl. 150	48.4	

Electromagnetic Flow Meter Model MIS




Measuring Mode, Display Layout »Single« configurable

^{*} $\underline{\mathsf{M}}$ easured $\underline{\mathsf{V}}$ alue

Measuring Mode, Display Layout »Dual« configurable

